## para-łest.com

## Sky Paragliders a.s.

Mr. Nemec Martin
Okružní 39
73911 Frýdlant nad Ostravicí
Czech Republic

## Certificate

The hereunder sample of paraglider has been tested
ISO 9001 in accordance with the following standards: EN 926-2:2005 \& EN 926-1:2006
Certification number

## Date of flight test

PG_0156.2008Manufacturer
Manufacturer Sky Paragliders a.s.
Glider model
Glider model Ares 2 SD
Maximum weight in flight (kg). ..... 85 kg
Minimum weight in flight ( kg ) ..... 65 kg
Glider's weight (kg.).
Glider's weight (kg.). ..... 5.2 kg

Flight tests
Serial number 2008-02-11-0147

Best Regards,


## Class: <br> D

In accordance with EN standards 926-2:2005 \& 926-1:2006:
Date of issue (DMY):
04. 06. 2008

Manufacturer: Sky Paragliders a.s.
Model: Ares 2 S
Serial number:

## Configuration during flight tests

## Paraglider

Maximum weight in flight (kg) 85
Minimum weight in flight (kg) 65
Glider's weight (kg) 5.2
Number of risers 4
Projected area (m2)

Harness used for testing (max weight)
Harness type
Harness brand

Harness model

Harness to risers distance (cm)
Distance between risers (cm)
Sky

## Accessories

Range of speed system (cm) 16
Speed range using brakes $(\mathrm{km} / \mathrm{h}) \quad 13$
Range of trimmers (cm) 0
Total speed range with accessories (km/h) 30

Inspections (whichever happens first)
Every year or every 100 flights
Warning! Before use refer to user's manual Paragliders
Axel II M Person or company having presented the glider for testing: Alexandre Paux

|  | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |  |  | 1 | 12 | 13 | 14 |  | , | 16 | 17 | 18 |  |  | 0 | 21 | 22 | 23 | 2 | 24 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | A | B | C | A | A | A | A | B | C |  | A | C | A | C | A | A | A | D | C | C |  | B | B | A | A | 0 | d |

## Flight test report

| Manufacturer | Sky Paragliders a.s. | Certification number | PG_0156.2008 |
| :--- | :--- | :--- | :--- |
| Address | Okružní 39 <br> 73911 Frýdlant nad Ostravicíí | Date of flight test | 22.05.2008 |
|  | Czech Republic |  |  |
| Representative | Alexandre Paux | Place of test | Villeneuve |
| Glider model | Ares 2 S | Classification | D |
| Trimmer | no |  |  |


| Test pilot Harness | Fukuoka Seiko <br> Sup'air - Altiplume <br> 60 |  | Thurnheer Claude <br> Sky Paragliders - Axel II M $85$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. Inflation/Take-off | C |  |  |  |
| Rising behaviour | Overshoots, shall be slowed down to avoid a front collapse | C | Overshoots, shall be slowed down to avoid a front collapse | C |
| Special take off technique required | No | A | No | A |
| 2. Landing | A |  |  |  |
| Special landing technique required | No | A | No | A |
| 3. Speed in straight flight | B |  |  |  |
| Trim speed more than $30 \mathrm{~km} / \mathrm{h}$ | Yes | A | Yes | A |
| Speed range using the controls larger than $10 \mathrm{~km} / \mathrm{h}$ | Yes | A | Yes | A |
| Minimum speed | Less than $25 \mathrm{~km} / \mathrm{h}$ | A | $25 \mathrm{~km} / \mathrm{h}$ to $30 \mathrm{~km} / \mathrm{h}$ | B |
| 4. Control movement | C |  |  |  |
| Max. weight in flight up to 80 kg |  |  |  |  |
| Symmetric control pressure / travel | Increasing / 40 cm to 55 cm | C | not available | 0 |
| Max. weight in flight 80 kg to 100 kg |  |  |  |  |
| Symmetric control pressure / travel | not available | 0 | Approximately constant / 45 cm to 60 cm | C |
| Max. weight in flight greater than 100 kg |  |  |  |  |
| Symmetric control pressure / travel | not available | 0 | not available | 0 |
| 5. Pitch stability exiting accelerated flight | A |  |  |  |
| Dive forward angle on exit | Dive forward less than $30^{\circ}$ | A | Dive forward less than $30^{\circ}$ | A |
| Collapse occurs | No | A | No | A |
| 6. Pitch stability operating controls during accelerated flight | A |  |  |  |
| Collapse occurs | No | A | No | A |
| 7. Roll stability and damping | A |  |  |  |
| Oscillations | Reducing | A | Reducing | A |
| 8. Stability in gentle spirals | A |  |  |  |
| Tendency to return to straight flight | Spontaneous exit | A | Spontaneous exit | A |
| 9. Behaviour in a steeply banked turn | B |  |  |  |
| Sink rate after two turns | More than $14 \mathrm{~m} / \mathrm{s}$ | B | More than $14 \mathrm{~m} / \mathrm{s}$ | B |
| 10. Symmetric front collapse | C |  |  |  |
| Entry | Rocking back less than $45^{\circ}$ | A | Rocking back less than $45^{\circ}$ | A |
| Recovery | Spontaneous in 3 s to 5 s | B | Spontaneous in less than 3 s | A |
| Dive forward angle on exit / Change of course | Dive forward $30^{\circ}$ to $60^{\circ}$ / <br> Keeping course | B | Dive forward $0^{\circ}$ to $30^{\circ} /$ Keeping course | A |
| Cascade occurs | No | A | No | A |
| With accelerator |  |  |  |  |
| Entry | Rocking back less than $45^{\circ}$ | A | Rocking back greater than $45^{\circ}$ | C |

Recovery
Dive forward angle on exit / Change of course
Cascade occurs
11. Exiting deep stall (parachutal stall)

Deep stall achieved
Recovery
Dive forward angle on exit
Change of course
Cascade occurs
12. High angle of attack recovery

Recovery
Cascade occurs

## 13. Recovery from a developed full stall

Dive forward angle on exit
Collapse
Cascade occurs (other than collapses)
Rocking back
Line tension
14. Asymmetric collapse

With $50 \%$ collapse
Change of course until re-inflation / Maximum dive forward or roll angle
Re-inflation behaviour
Total change of course
Collapse on the opposite side occurs
Twist occurs
Cascade occurs
With 75\% collapse
Change of course until re-inflation / Maximum dive forward or roll angle
Re-inflation behaviour
Total change of course
Collapse on the opposite side occurs
Twist occurs
Cascade occurs
With 50\% collapse and accelerator
Change of course until re-inflation / Maximum dive forward or roll angle
Re-inflation behaviour
Total change of course
Collapse on the opposite side occurs
Twist occurs
Cascade occurs
With $75 \%$ collapse and accelerator
Change of course until re-inflation / Maximum dive forward or roll angle
Re-inflation behaviour
Total change of course
Collapse on the opposite side occurs No
Twist occurs No
Cascade occurs No

Spontaneous in 3 s to 5 s
Dive forward $0^{\circ}$ to $30^{\circ} /$ Entering a turn of less than $90^{\circ}$
No
A
Yes
Spontaneous in less than 3 s
Dive forward $0^{\circ}$ to $30^{\circ}$
Changing course less than $45^{\circ}$
No
C
Spontaneous in less than 3 s
No
A
Dive forward $0^{\circ}$ to $30^{\circ}$
No collapse
No
Less than $45^{\circ}$
Most lines tight
C

Less than $90^{\circ}$ / Dive or roll angle $15^{\circ}$ to $45^{\circ}$

Spontaneous re-inflation
Less than $360^{\circ}$
No
No
No
$90^{\circ}$ to $180^{\circ}$ / Dive or roll angle
$15^{\circ}$ to $45^{\circ}$
Spontaneous re-inflation
Less than $360^{\circ}$
No
No
No
$90^{\circ}$ to $180^{\circ}$ / Dive or roll angle $15^{\circ}$ to $45^{\circ}$

Spontaneous re-inflation
Less than $360^{\circ}$
No
No
No
$90^{\circ}$ to $180^{\circ}$ / Dive or roll angle $45^{\circ}$ to $60^{\circ}$

Spontaneous re-inflation
Less than $360^{\circ}$
15. Directional control with a maintained asymmetric collapse
Able to keep course
Yes
A Yes A
$180^{\circ}$ turn away from the collapsed side possible in $10 \mathrm{~s} \quad$ Yes
Amount of control range between turn and stall or spin
More than $50 \%$ of the symmetric control travel

A Yes
A More than $50 \%$ of the symmetric A control travel

| Spin occurs | No | A | No | A |
| :---: | :---: | :---: | :---: | :---: |
| 17. Low speed spin tendency | D |  |  |  |
| Spin occurs | Yes | D | No | A |
| 18. Recovery from a developed spin | C |  |  |  |
| Spin rotation angle after release | Stops spinning in $90^{\circ}$ to $180^{\circ}$ | C | Stops spinning in less than $90^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 19. B-line stall | C |  |  |  |
| Change of course before release | Changing course less than $45^{\circ}$ | A | Changing course less than $45^{\circ}$ | A |
| Behaviour before release | Remains stable with straight span | A | Remains stable without straight span | C |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 20. Big ears | B |  |  |  |
| Entry procedure | Dedicated controls | A | Dedicated controls | A |
| Behaviour during big ears | Stable flight | A | Stable flight | A |
| Recovery | Spontaneous in 3 s to 5 s | B | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| 21. Big ears in accelerated flight | B |  |  |  |
| Entry procedure | Dedicated controls | A | Dedicated controls | A |
| Behaviour during big ears | Stable flight | A | Stable flight | A |
| Recovery | Recovery through pilot action in less than a further 3 s | B | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| Behaviour immediately after releasing the accelerator while maintaining big ears | Stable flight | A | Stable flight | A |
| 22. Behaviour exiting a steep spiral | A |  |  |  |
| Tendency to return to straight flight | Spontaneous exit | A | Spontaneous exit | A |
| Turn angle to recover normal flight | Less than $720^{\circ}$, spontaneous recovery | A | Less than $720^{\circ}$, spontaneous recovery | A |
| Sink rate when evaluating spiral stability [ $\mathrm{m} / \mathrm{s}$ ] | 18 |  | 19 |  |
| 23. Alternative means of directional control | A |  |  |  |
| $180^{\circ}$ turn achievable in 20 s | Yes | A | Yes | A |
| Stall or spin occurs | No | A | No | A |
| 24. Any other flight procedure and/or configuration described in the user's manual | 0 |  |  |  |
| Procedure works as described | not available | 0 | not available | 0 |
| Procedure suitable for novice pilots | not available | 0 | not available | 0 |
| Cascade occurs | not available | 0 | not available | 0 |
| 25. Comments of test pilot Comments |  |  |  |  |

Sky Paragliders a.s.<br>Mr. Nemec Martin<br>Okružní 39<br>73911 Frýdlant nad Ostravicí<br>Czech Republic

## Certificate

The hereunder sample of paraglider has been tested
1S0 9001 in accordance with the following standards: EN 926-2:2005 \& EN 926-1:2006
$\qquad$

| Certification number | PG_0133.2008 |
| :---: | :---: |
| Manufacturer | Sky Paragliders a.s. |
| Glider model | Ares 2 M |
| Category |  |
| Maximum weight in flight (kg). | 100 kg |
| Minimum weight in flight (kg). | 80 kg |
| Glider's weight (kg.) | .5 .4 kg |

## Date of flight test

Flight tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 02. 04. 2008
Serial number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2007_11_11_1029


## Class: <br> D

In accordance with EN standards 926-2:2005 \& 926-1:2006:
Date of issue (DMY):
Manufacturer: Sky Paragliders a.s.
Model: Ares 2 M
Serial number:

## Configuration during flight tests

## Paraglider

Maximum weight in flight (kg) 100
Minimum weight in flight (kg) 80
Glider's weight (kg) 5.4
Number of risers 4
Projected area (m2)
20.99

Harness used for testing (max weight)
Harness type
Harness brand
Harness model
Harness to risers distance (cm)
Distance between risers (cm)

## Accessories

Range of speed system (cm) 16
Speed range using brakes $(\mathrm{km} / \mathrm{h}) \quad 13$
Range of trimmers (cm) 0
Total speed range with accessories (km/h) 35

Inspections (whichever happens first)
Every year or every 100 flights
Warning! Before use refer to user's manual
Person or company having presented the glider for testing: Paux Alexandre


## Flight test report

| Manufacturer | Sky Paragliders a.s. | Certification number | PG_0133.2008 |
| :--- | :--- | :--- | :--- |
| Address | Okružní 39 <br> 73911 Frýdlant nad Ostravicí | Date of flight test | 02. 04. 2008 |
|  | Czech Republic |  |  |
| Representative | Paux Alexandre | Place of test | Villeneuve |
| Glider model | Ares 2 M | Classification | D |
| Trimmer | no |  |  |


| Test pilot Harness Total weight in flight (kg) | Thurnheer Claude <br> Advance - Progress Light $80$ |  | Zoller Alain <br> Sup'Air - Light M $100$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. Inflation/Take-off | C |  |  |  |
| Rising behaviour | Overshoots, shall be slowed down to avoid a front collapse | C | Overshoots, shall be slowed down to avoid a front collapse | C |
| Special take off technique required | No | A | No | A |
| 2. Landing | A |  |  |  |
| Special landing technique required | No | A | No | A |
| 3. Speed in straight flight | B |  |  |  |
| Trim speed more than $30 \mathrm{~km} / \mathrm{h}$ | Yes | A | Yes | A |
| Speed range using the controls larger than $10 \mathrm{~km} / \mathrm{h}$ | Yes | A | Yes | A |
| Minimum speed | $25 \mathrm{~km} / \mathrm{h}$ to $30 \mathrm{~km} / \mathrm{h}$ | B | $25 \mathrm{~km} / \mathrm{h}$ to $30 \mathrm{~km} / \mathrm{h}$ | B |
| 4. Control movement | C |  |  |  |
| Max. weight in flight up to 80 kg |  |  |  |  |
| Symmetric control pressure / travel | not available | 0 | not available | 0 |
| Max. weight in flight 80 kg to 100 kg |  |  |  |  |
| Symmetric control pressure / travel | Increasing / greater than 60 cm | A | Increasing / 45 cm to 60 cm | C |
| Max. weight in flight greater than 100 kg |  |  |  |  |
| Symmetric control pressure / travel | not available | 0 | not available | 0 |
| 5. Pitch stability exiting accelerated flight | A |  |  |  |
| Dive forward angle on exit | Dive forward less than $30^{\circ}$ | A | Dive forward less than $30^{\circ}$ | A |
| Collapse occurs | No | A | No | A |
| 6. Pitch stability operating controls during accelerated flight | A |  |  |  |
| Collapse occurs | No | A | No | A |
| 7. Roll stability and damping | A |  |  |  |
| Oscillations | Reducing | A | Reducing | A |
| 8. Stability in gentle spirals | A |  |  |  |
| Tendency to return to straight flight | Spontaneous exit | A | Spontaneous exit | A |
| 9. Behaviour in a steeply banked turn | B |  |  |  |
| Sink rate after two turns | More than $14 \mathrm{~m} / \mathrm{s}$ | B | More than $14 \mathrm{~m} / \mathrm{s}$ | B |
| 10. Symmetric front collapse | C |  |  |  |
| Entry | Rocking back less than $45^{\circ}$ | A | Rocking back less than $45^{\circ}$ | A |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit / Change of course | Dive forward $0^{\circ}$ to $30^{\circ} /$ Keeping course | A | Dive forward $0^{\circ}$ to $30^{\circ} /$ Keeping course | A |
| Cascade occurs | No | A | No | A |
| With accelerator |  |  |  |  |
| Entry | Rocking back greater than $45^{\circ}$ | C | Rocking back greater than $45^{\circ}$ | C |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |


| Dive forward angle on exit / Change of course | Dive forward $0^{\circ}$ to $30^{\circ} /$ Keeping course | A | Dive forward $30^{\circ}$ to $60^{\circ} /$ Entering a turn of less than $90^{\circ}$ | B |
| :---: | :---: | :---: | :---: | :---: |
| Cascade occurs | No | A | No | A |
| 11. Exiting deep stall (parachutal stall) | B |  |  |  |
| Deep stall achieved | Yes | A | Yes | A |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $30^{\circ}$ to $60^{\circ}$ | B |
| Change of course | Changing course less than $45^{\circ}$ | A | Changing course less than $45^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 12. High angle of attack recovery | D |  |  |  |
| Recovery | Spontaneous in 3 s to 5 s | C | Recovery through pilot action in less than a further 3 s | D |
| Cascade occurs | No | A | No | A |
| 13. Recovery from a developed full stall | C |  |  |  |
| Dive forward angle on exit | Dive forward $30^{\circ}$ to $60^{\circ}$ | B | Dive forward $30^{\circ}$ to $60^{\circ}$ | B |
| Collapse | No collapse | A | No collapse | A |
| Cascade occurs (other than collapses) | No | A | No | A |
| Rocking back | Greater than $45^{\circ}$ | C | Greater than $45^{\circ}$ | C |
| Line tension | Most lines tight | A | Most lines tight | A |
| 14. Asymmetric collapse | D |  |  |  |
| With 50\% collapse |  |  |  |  |
| Change of course until re-inflation / Maximum dive forward or roll angle | Less than $90^{\circ}$ / Dive or roll angle $15^{\circ}$ to $45^{\circ}$ | A | Less than $90^{\circ}$ / Dive or roll angle $15^{\circ}$ to $45^{\circ}$ | A |
| Re-inflation behaviour | Spontaneous re-inflation | A | Spontaneous re-inflation | A |
| Total change of course | Less than $360^{\circ}$ | A | Less than $360^{\circ}$ | A |
| Collapse on the opposite side occurs | No | A | No | A |
| Twist occurs | No | A | No | A |
| Cascade occurs | No | A | No | A |
| With 75\% collapse |  |  |  |  |
| Change of course until re-inflation / Maximum dive forward or roll angle | $90^{\circ}$ to $180^{\circ}$ / Dive or roll angle $60^{\circ}$ to $90^{\circ}$ | C | $90^{\circ}$ to $180^{\circ}$ / Dive or roll angle $60^{\circ}$ to $90^{\circ}$ | C |
| Re-inflation behaviour | Spontaneous re-inflation | A | Spontaneous re-inflation | A |
| Total change of course | Less than $360^{\circ}$ | A | Less than $360^{\circ}$ | A |
| Collapse on the opposite side occurs | No | A | No | A |
| Twist occurs | No | A | No | A |
| Cascade occurs | No | A | No | A |
| With 50\% collapse and accelerator |  |  |  |  |
| Change of course until re-inflation / Maximum dive forward or roll angle | Less than $90^{\circ}$ / Dive or roll angle $15^{\circ}$ to $45^{\circ}$ | A | $90^{\circ}$ to $180^{\circ}$ / Dive or roll angle $15^{\circ}$ to $45^{\circ}$ | B |
| Re-inflation behaviour | Spontaneous re-inflation | A | Spontaneous re-inflation | A |
| Total change of course | Less than $360^{\circ}$ | A | Less than $360^{\circ}$ | A |
| Collapse on the opposite side occurs | No | A | No | A |
| Twist occurs | No | A | No | A |
| Cascade occurs | No | A | No | A |
| With 75\% collapse and accelerator |  |  |  |  |
| Change of course until re-inflation / Maximum dive forward or roll angle | $90^{\circ}$ to $180^{\circ}$ / Dive or roll angle $60^{\circ}$ to $90^{\circ}$ | C | $180^{\circ}$ to $360^{\circ}$ / Dive or roll angle $60^{\circ}$ to $90^{\circ}$ | D |
| Re-inflation behaviour | Spontaneous re-inflation | A | Spontaneous re-inflation | A |
| Total change of course | Less than $360^{\circ}$ | A | Less than $360^{\circ}$ | A |
| Collapse on the opposite side occurs | No | A | Yes, no turn reversal | C |
| Twist occurs | No | A | No | A |
| Cascade occurs | No | A | No | A |
| 15. Directional control with a maintained asymmetric collapse | A |  |  |  |
| Able to keep course | Yes | A | Yes | A |
| $180^{\circ}$ turn away from the collapsed side possible in 10 s | Yes | A | Yes | A |
| Amount of control range between turn and stall or spin | More than $50 \%$ of the symmetric control travel | A | More than $50 \%$ of the symmetric control travel | A |

16. Trim speed spin tendency

A

| Spin occurs | No | A | No | A |
| :---: | :---: | :---: | :---: | :---: |
| 17. Low speed spin tendency | D |  |  |  |
| Spin occurs | Yes | D | Yes | D |
| 18. Recovery from a developed spin | A |  |  |  |
| Spin rotation angle after release | Stops spinning in less than $90^{\circ}$ | A | Stops spinning in less than $90^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 19. B-line stall | C |  |  |  |
| Change of course before release | Changing course less than $45^{\circ}$ | A | Changing course less than $45^{\circ}$ | A |
| Behaviour before release | Remains stable without straight span | C | Remains stable without straight span | C |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 20. Big ears | A |  |  |  |
| Entry procedure | Dedicated controls | A | Dedicated controls | A |
| Behaviour during big ears | Stable flight | A | Stable flight | A |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| 21. Big ears in accelerated flight | C |  |  |  |
| Entry procedure | Dedicated controls | A | Dedicated controls | A |
| Behaviour during big ears | Stable flight | A | Unstable flight | C |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| Behaviour immediately after releasing the accelerator while maintaining big ears | Stable flight | A | Stable flight | A |
| 22. Behaviour exiting a steep spiral | A |  |  |  |
| Tendency to return to straight flight | Spontaneous exit | A | Spontaneous exit | A |
| Turn angle to recover normal flight | Less than $720^{\circ}$, spontaneous recovery | A | Less than $720^{\circ}$, spontaneous recovery | A |
| Sink rate when evaluating spiral stability [ $\mathrm{m} / \mathrm{s}$ ] | 16 |  | 17 |  |
| 23. Alternative means of directional control | A |  |  |  |
| $180^{\circ}$ turn achievable in 20 s | Yes | A | Yes | A |
| Stall or spin occurs | No | A | No | A |
| 24. Any other flight procedure and/or configuration described in the user's manual | 0 |  |  |  |
| Procedure works as described | not available | 0 | not available | 0 |
| Procedure suitable for novice pilots | not available | 0 | not available | 0 |
| Cascade occurs | not available | 0 | not available | 0 |
| 25. Comments of test pilot Comments |  |  |  |  |

## Sky Paragliders ass.

Mr. Nemea Martin Okružní 39
73911 Frýdlant nad Ostravicí Czech Republic

## Certificate

The hereunder sample of paraglider has been tested in accordance with the following standards:
EN 926-2:2005 \& EN 926-1:2006


## Date of flight test

Flight tests
15. 03.2008

Serial number
2008_01_11_0127

Load test
.05. 04. 2008
Serial number 2008_01_11_0127

Best Regards,


RandiEnikon
Randi Eriksen

Class:
D
In accordance with EN standards 926-2:2005 \& 926-1:2006:
Date of issue (DMY):

PG_0136.2008
31. 05. 2008

Manufacturer: Sky Paragliders a.s.
Model: Ares 2 L
Serial number:

## Configuration during flight tests

## Paraglider

Maximum weight in flight (kg) 120
Minimum weight in flight (kg)
Glider's weight (kg)
95

Number of risers 4
Projected area (m2)

Harness used for testing (max weight)
Harness type
Harness brand

Harness model

Harness to risers distance (cm)
Distance between risers (cm)
Sky

## Accessories

Range of speed system (cm) 16
Speed range using brakes (km/h) 14
Range of trimmers (cm) 0
Total speed range with accessories (km/h) 36

Inspections (whichever happens first)
Every year or every 100 flights
Warning! Before use refer to user's manual Paragliders
Axel II M Person or company having presented the glider for testing: Paux Alexandre

| 1 |
| :--- |
| 2 <br> 2 |

## Flight test report

| Manufacturer | Sky Paragliders a.s. | Certification number | PG_0136.2008 |
| :--- | :--- | :--- | :--- |
| Address | Okružní 39 <br>  <br>  <br> 73911 Frýdlant nad Ostravicí | Date of flight test | 19.03.2008 |
| Czech Republic |  |  |  |$\quad$| Place of test |
| :--- |


| Test pilot Harness Total weight in flight (kg) | Thurnheer Claude <br> Gin - genie III <br> 95 |  | Zoller Alain <br> Sky Paragliders - Axel II M $120$ |  |
| :---: | :---: | :---: | :---: | :---: |
| 1. Inflation/Take-off | C |  |  |  |
| Rising behaviour | Overshoots, shall be slowed down to avoid a front collapse | C | Overshoots, shall be slowed down to avoid a front collapse | C |
| Special take off technique required | No | A | No | A |
| 2. Landing | A |  |  |  |
| Special landing technique required | No | A | No | A |
| 3. Speed in straight flight | A |  |  |  |
| Trim speed more than $30 \mathrm{~km} / \mathrm{h}$ | Yes | A | Yes | A |
| Speed range using the controls larger than $10 \mathrm{~km} / \mathrm{h}$ | Yes | A | Yes | A |
| Minimum speed | Less than $25 \mathrm{~km} / \mathrm{h}$ | A | Less than $25 \mathrm{~km} / \mathrm{h}$ | A |
| 4. Control movement | B |  |  |  |
| Max. weight in flight up to 80 kg |  |  |  |  |
| Symmetric control pressure / travel | not available | 0 | not available | 0 |
| Max. weight in flight 80 kg to 100 kg |  |  |  |  |
| Symmetric control pressure / travel | Approximately constant / greater than 60 cm | B | not available | 0 |
| Max. weight in flight greater than 100 kg |  |  |  |  |
| Symmetric control pressure / travel | not available | 0 | Approximately constant / greater than 65 cm | B |
| 5. Pitch stability exiting accelerated flight | A |  |  |  |
| Dive forward angle on exit | Dive forward less than $30^{\circ}$ | A | Dive forward less than $30^{\circ}$ | A |
| Collapse occurs | No | A | No | A |
| 6. Pitch stability operating controls during accelerated flight | A |  |  |  |
| Collapse occurs | No | A | No | A |
| 7. Roll stability and damping | A |  |  |  |
| Oscillations | Reducing | A | Reducing | A |
| 8. Stability in gentle spirals | A |  |  |  |
| Tendency to return to straight flight | Spontaneous exit | A | Spontaneous exit | A |
| 9. Behaviour in a steeply banked turn | B |  |  |  |
| Sink rate after two turns | More than $14 \mathrm{~m} / \mathrm{s}$ | B | More than $14 \mathrm{~m} / \mathrm{s}$ | B |
| 10. Symmetric front collapse | C |  |  |  |
| Entry | Rocking back less than $45^{\circ}$ | A | Rocking back greater than $45^{\circ}$ | C |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit / Change of course | Dive forward $0^{\circ}$ to $30^{\circ} /$ Keeping course | A | Dive forward $30^{\circ}$ to $60^{\circ}$ / Entering a turn of less than $90^{\circ}$ | B |
| Cascade occurs | No | A | No | A |
| With accelerator |  |  |  |  |


| Entry | Rocking back greater than $45^{\circ}$ | C | Rocking back greater than $45^{\circ}$ | C |
| :---: | :---: | :---: | :---: | :---: |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit / Change of course | Dive forward $0^{\circ}$ to $30^{\circ} /$ Keeping course | A | Dive forward $0^{\circ}$ to $30^{\circ} /$ Entering a turn of less than $90^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 11. Exiting deep stall (parachutal stall) | A |  |  |  |
| Deep stall achieved | Yes | A | Yes | A |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| Change of course | Changing course less than $45^{\circ}$ | A | Changing course less than $45^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 12. High angle of attack recovery | A |  |  |  |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Cascade occurs | No | A | No | A |
| 13. Recovery from a developed full stall | C |  |  |  |
| Dive forward angle on exit | Dive forward $30^{\circ}$ to $60^{\circ}$ | B | Dive forward $30^{\circ}$ to $60^{\circ}$ | B |
| Collapse | No collapse | A | No collapse | A |
| Cascade occurs (other than collapses) | No | A | No | A |
| Rocking back | Greater than $45^{\circ}$ | C | Greater than $45^{\circ}$ | C |
| Line tension | Most lines tight | A | Most lines tight | A |
| 14. Asymmetric collapse | D |  |  |  |
| With 50\% collapse |  |  |  |  |
| Change of course until re-inflation / Maximum dive forward or roll angle | Less than $90^{\circ}$ / Dive or roll angle $15^{\circ}$ to $45^{\circ}$ | A | Less than $90^{\circ}$ / Dive or roll angle $15^{\circ}$ to $45^{\circ}$ | A |
| Re-inflation behaviour | Spontaneous re-inflation | A | Spontaneous re-inflation | A |
| Total change of course | Less than $360^{\circ}$ | A | Less than $360^{\circ}$ | A |
| Collapse on the opposite side occurs | No | A | No | A |
| Twist occurs | No | A | No | A |
| Cascade occurs | No | A | No | A |
| With 75\% collapse |  |  |  |  |
| Change of course until re-inflation / Maximum dive forward or roll angle | $90^{\circ}$ to $180^{\circ} /$ Dive or roll angle $60^{\circ}$ to $90^{\circ}$ | C | $90^{\circ}$ to $180^{\circ}$ / Dive or roll angle $45^{\circ}$ to $60^{\circ}$ | C |
| Re-inflation behaviour | Spontaneous re-inflation | A | Spontaneous re-inflation | A |
| Total change of course | Less than $360^{\circ}$ | A | Less than $360^{\circ}$ | A |
| Collapse on the opposite side occurs | No | A | No | A |
| Twist occurs | No | A | No | A |
| Cascade occurs | No | A | No | A |
| With 50\% collapse and accelerator |  |  |  |  |
| Change of course until re-inflation / Maximum dive forward or roll angle | Less than $90^{\circ}$ / Dive or roll angle $45^{\circ}$ to $60^{\circ}$ | C | Less than $90^{\circ}$ / Dive or roll angle $60^{\circ}$ to $90^{\circ}$ | C |
| Re-inflation behaviour | Spontaneous re-inflation | A | Spontaneous re-inflation | A |
| Total change of course | Less than $360^{\circ}$ | A | Less than $360^{\circ}$ | A |
| Collapse on the opposite side occurs | No | A | No | A |
| Twist occurs | No | A | No | A |
| Cascade occurs | No | A | No | A |
| With 75\% collapse and accelerator |  |  |  |  |
| Change of course until re-inflation / Maximum dive forward or roll angle | $90^{\circ}$ to $180^{\circ}$ / Dive or roll angle $60^{\circ}$ to $90^{\circ}$ | C | $180^{\circ}$ to $360^{\circ}$ / Dive or roll angle $60^{\circ}$ to $90^{\circ}$ | D |
| Re-inflation behaviour | Spontaneous re-inflation | A | Spontaneous re-inflation | A |
| Total change of course | Less than $360^{\circ}$ | A | Greater than $360^{\circ}$ | C |
| Collapse on the opposite side occurs | Yes, no turn reversal | C | Yes, no turn reversal | C |
| Twist occurs | No | A | No | A |
| Cascade occurs | No | A | No | A |
| 15. Directional control with a maintained asymmetric collapse | A |  |  |  |
| Able to keep course | Yes | A | Yes | A |
| $180^{\circ}$ turn away from the collapsed side possible in 10 s | Yes | A | Yes | A |
| Amount of control range between turn and stall or spin | More than $50 \%$ of the symmetric control travel | A | More than $50 \%$ of the symmetric control travel | A |


| 16. Trim speed spin tendency | A |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Spin occurs | No | A | No | A |
| 17. Low speed spin tendency | D |  |  |  |
| Spin occurs | Yes | D | Yes | D |
| 18. Recovery from a developed spin | A |  |  |  |
| Spin rotation angle after release | Stops spinning in less than $90^{\circ}$ | A | Stops spinning in less than $90^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 19. B-line stall | C |  |  |  |
| Change of course before release | Changing course more than $45^{\circ}$ | C | Changing course more than $45^{\circ}$ | C |
| Behaviour before release | Remains stable without straight span | C | Remains stable without straight span | C |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $30^{\circ}$ to $60^{\circ}$ | A |
| Cascade occurs | No | A | No | A |
| 20. Big ears | A |  |  |  |
| Entry procedure | Dedicated controls | A | Dedicated controls | A |
| Behaviour during big ears | Stable flight | A | Stable flight | A |
| Recovery | Spontaneous in less than 3 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| 21. Big ears in accelerated flight | A |  |  |  |
| Entry procedure | Dedicated controls | A | Dedicated controls | A |
| Behaviour during big ears | Stable flight | A | Stable flight | A |
| Recovery | Spontaneous in 3 s to 5 s | A | Spontaneous in less than 3 s | A |
| Dive forward angle on exit | Dive forward $0^{\circ}$ to $30^{\circ}$ | A | Dive forward $0^{\circ}$ to $30^{\circ}$ | A |
| Behaviour immediately after releasing the accelerator while maintaining big ears | Stable flight | A | Stable flight | A |
| 22. Behaviour exiting a steep spiral | A |  |  |  |
| Tendency to return to straight flight | Spontaneous exit | A | Spontaneous exit | A |
| Turn angle to recover normal flight | Less than $720^{\circ}$, spontaneous recovery | A | Less than $720^{\circ}$, spontaneous recovery | A |
| Sink rate when evaluating spiral stability [m/s] | 19 |  | 20 |  |
| 23. Alternative means of directional control | A |  |  |  |
| $180^{\circ}$ turn achievable in 20 s | Yes | A | Yes | A |
| Stall or spin occurs | No | A | No | A |
| 24. Any other flight procedure and/or configuration described in the user's manual | A |  |  |  |
| Procedure works as described | not available | 0 | Yes | A |
| Procedure suitable for novice pilots | not available | 0 | Yes | A |
| Cascade occurs | not available | 0 | No | A |
| 25. Comments of test pilot Comments |  |  |  |  |



## para-test.com



Air Turquoise SA

## Load test report

The model describe hereafter is in conformity with the load and shock tests carried out by: para-test.com, official test laboratory of Switzerland EN 926-1:2006
Manufacturer . . . . . . . . . . . . Sky Paragliders ass.
Glider model . . . . . . . . . . . 158 kg
Max. load (kg) . . . . . . . . .

## Shock test

1000 daN
The model had no appearant damages to question its airworthiness.

## Mechanical resistance test

The model had been tested to 8 G of it's total weight in flight during 3 sec

## RandiEriks

Randi Eriksen

